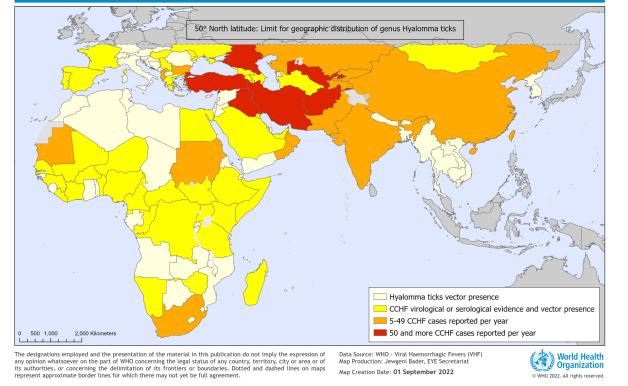
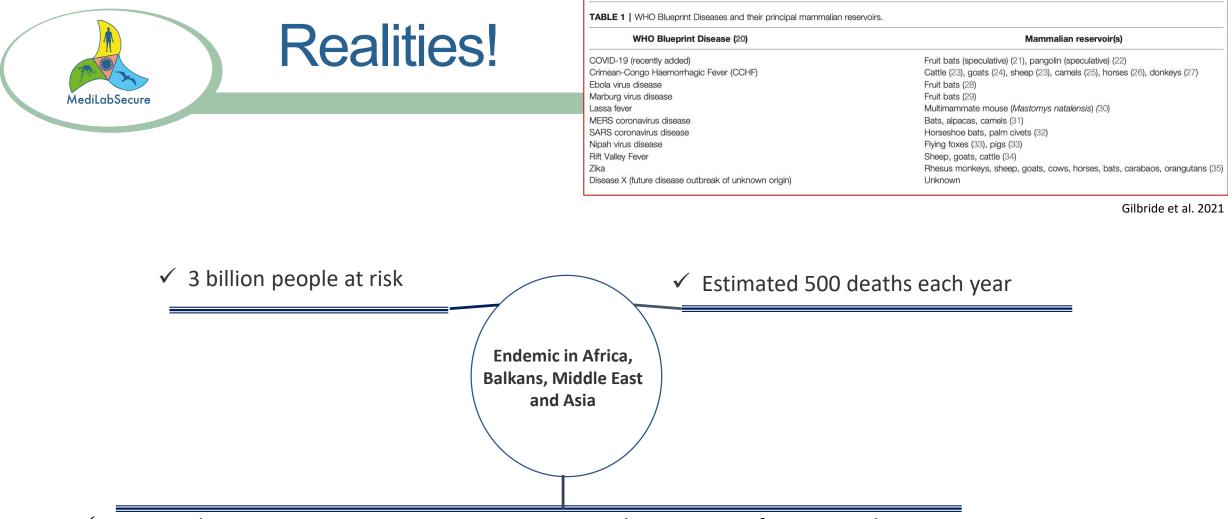
Balkan & Black Sea Regional Meeting

May 8-11th, 2023

Petrovac, Montenegro


MediLabSecure

CCHF STATUS IN BALKANS & BLACK SEA


Aykut Ozkul, DVM, PhD

Crimean Congo Hemorrhagic Fever

- An endemic disease in Africa, Asia, the Balkans and Russia.
- Several cases and virus detection in Western Europe.
- An arbovirus caused fatal disease in humans.
- Animals can get infected but no disease is reported.
- Classified in WHO's public health priority list, since the absence of therapeutic agents and licensed vaccine(s).

Geographic distribution of Crimean-Congo Haemorrhagic Fever (2022)

✓ Estimated 10,000 to 15,000 Crimean-Congo Haemorrhagic Fever infections each year

Epidemiology

Affecting factors

Abiotic✓ Climate

✓ Humidity

✓ Vegetation

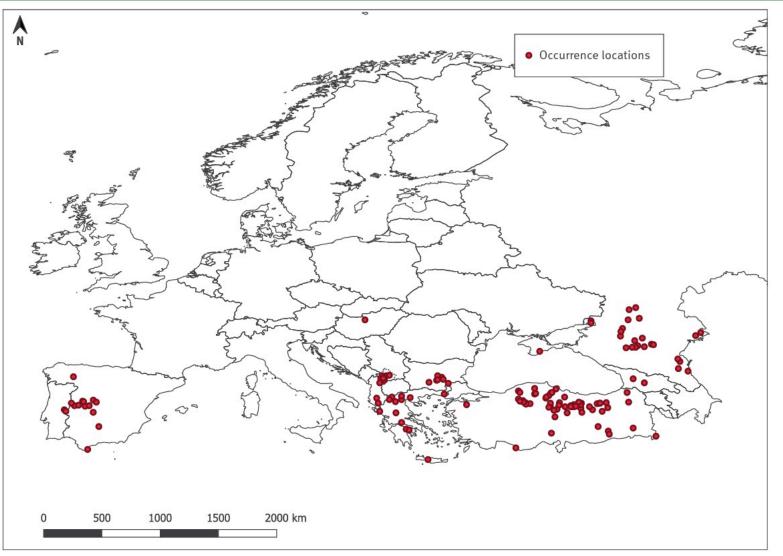
➢ Biotic

✓ Vector

Ticks

✓ Host

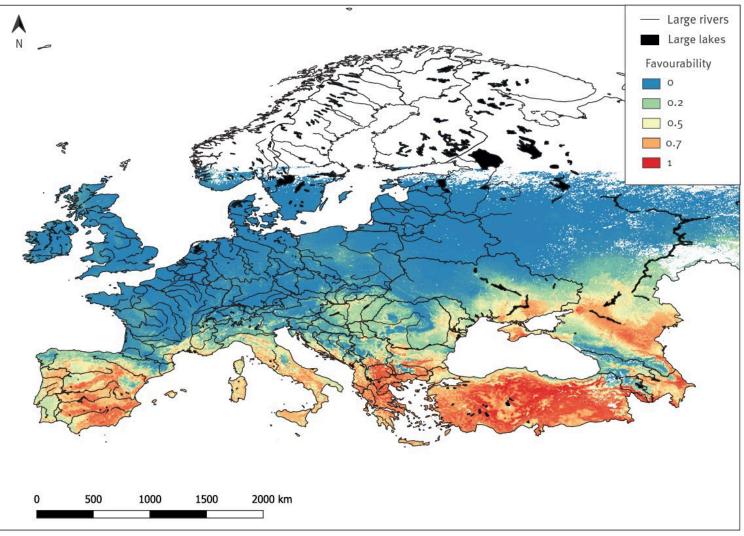
- Human (Accidental)
- Animals (natural reservoir)


TABLE

Variables collated for use in the spatial model on Crimean-Congo haemorrhagic fever occurrence in 52 countries and territories within the European Region, 2012–2022

Definition				Code		Source
Annual mean temperature				WC_bio1		WorldClim [27]
Mean diurnal range (mean of m	nonthlv (max temperature	– min temperature))		WC bio2		WorldClim [27]
Isothermality (bio2/bio7						WorldClim [27]
Temperature seasonality						WorldClim [27]
Max temperature of the						WorldClim [27]
Min temperature of the			Nesservial			WorldClim [27
Temperature annual ran			Nosocomial			WorldClim [27
Mean temperature of the			Transmission		_	WorldClim [27
Mean temperature of the						WorldClim [27
Mean temperature of the 🥌	A					WorldClim [27
Mean temperature of the		(i	LOS			WorldClim [27
Annual precipitation						WorldClim [27
Precipitation of the wett						WorldClim [27
Precipitation of the drie	Ungulates	Humans				WorldClim [27
Precipitation seasonalit						WorldClim [27
Precipitation of the wett		dults				WorldClim [27
Precipitation of the drie	A					WorldClim [27
4						WorldClim [27
						WorldClim [27
					nthwaite	ENVIREM datas [28]
		Nymphs 🛪	F		eIndex	ENVIREM datas [28]
		'	-		ity	ENVIREM datas [28]
12			60		ayso	ENVIREM datas [28]
5°C multiplied by numb	Eggs	TE		Small Animals	ays5	ENVIREM datas [28]
Count of the number of I	-86,	-(-)-	*	annais	emp10	ENVIREM datas [28]
Compensated thermicity of the coldest month, m compensations for better comp	parability across the globe	Larva			dex	ENVIREM datas [28]
SAGA GIS topographic wetness	s index		EF	R_topoWe	t	ENVIREM datas

Disease Occurrence in MLS Geography


Occurrence locations of Crimean-Congo hemorrhagic fever cases in humans and Crimean-Congo hemorrhagic fever virus isolates from ticks, European Region, 2012–2022 (n = 141 before spatial thinning)

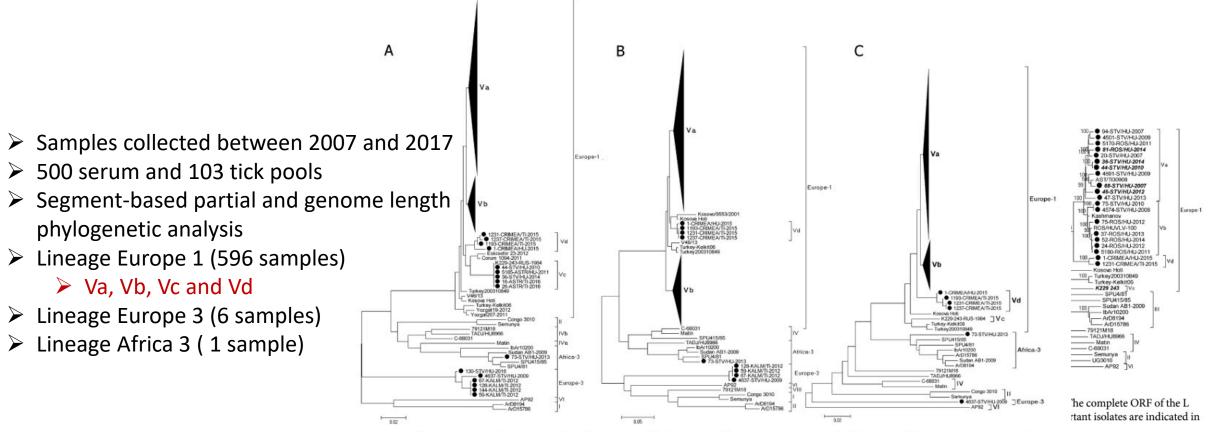
Epidemiological Intelligence from Open Sources (EIOS)

Favorability predictions for Crimean-Congo Hemorrhagic Fever occurrence, European Region below ~60°North latitude, 2012–2022

MediLabSecure

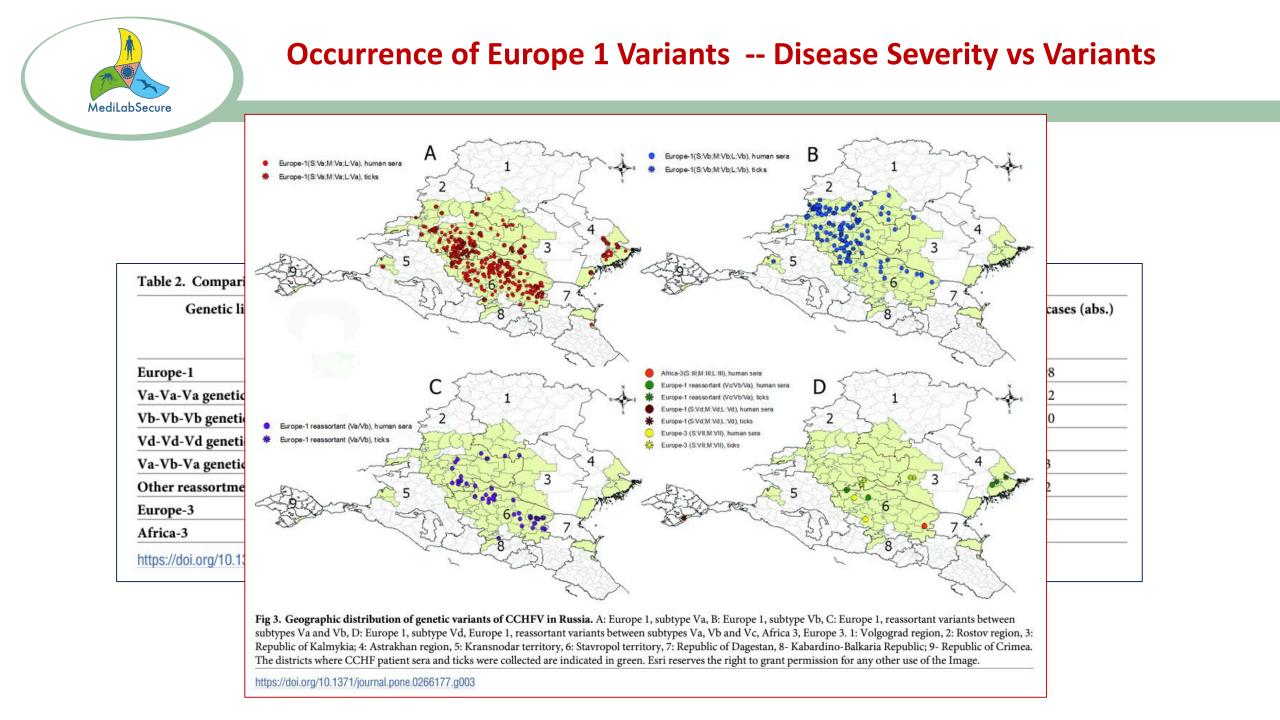
Fanelli et al, 2023

- The aim of the study was to assess the epidemiology of CCHF in the territory of the FSU (in 6 territories) over the past 16 years based on data from ProMED-RUS.
- reviewed 289 ProMED-RUS reports on CCHF published in the period from 2005 to 2020 inclusive.
- According to ProMED-RUS, during 2005-2020, cases of CCHF were registered in <u>Russia</u> (Rostov, Stavropol, Volgograd, Astrakhan regions, the Republics of Kalmykia, Kabardino-Balkaria, Dagestan, Ingushetia), <u>Kazakhstan</u>, <u>Georgia</u>, <u>Kyrgyzstan</u>, <u>Uzbekistan</u>, and <u>Tajikistan</u>.
- In Russia, during this period 1,919 cases of the disease were registered, including 43 deaths (CFR 2.8%).


Russian Speaking Countries

- The first cases of CCHF in Georgia was in 2009. In 2010-2012, sporadic cases of the disease were
 registered in this country, and since 2013, more than 10 cases of CCHF are diagnosed annually. In
 2020, only 9 cases of CCHF were registered in Georgia, and 1 ended fatally (CFR- 30%).
- The cases of CCHF in the South of Kazakhstan (Zhambyl, Kyzylorda, and Turkestan regions) since 2008. The largest number of cases (26) registered in 2009. Later, from 6 to 20 cases of the disease with a CFR of 20- 30% are registered annually.
- The ProMED-RUS service first reported 5 cases of CCHF in Tajikistan in 2009, 3 of them were fatal (CFR 60%). Afterward, there was no information about cases of CCHF.
- In 2019, ProMED-mail first reported a case of CCHF infection in Kyrgyzstan, imported to Kazakhstan. In 2020, no cases of CCHF were registered in this country
- first reported 13 cases of CCHF in Uzbekistan in 2013-2015, 10 of them were a fatal, and 2 in 2017.

https://doi.org/10.1016/j.ijid.2021.12.301



MediLabSecure

Fig 1. Neighbor-joining phylogenetic trees based on: A: A 538 bp fragment of the S segment; B: A 435 bp fragment of the M segment; C: A 437 bp fragment of L segment; sequences from the present study are marked.

https://doi.org/10.1371/journal.pone.0266177.g001

➤ Anatolia

- Adult ticks were collected from the animals (cows, sheep, dogs, and cats) 5 distinct regions. A total of 901 ticks (in 158 pools)
- Rhipicephalus sanguineus complex was the most abundant species (44.1%), followed by Rhipicephalus bursa (38.3%), Haemaphysalis parva (7.2%), and others.
- Crimean– Congo hemorrhagic fever virus (CCHFV) lineage Europe 2 sequences were detected in R. bursa in five (3.2%) of the pools

VECTOR-BORNE AND ZOONOTIC DISEASES Volume 22, Number 2, 2022 © Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2021.0082

Open camera or QR reader and scan code to access this article and other resources online.

Several Tick-Borne Pathogenic Viruses in Circulation in Anatolia, Turkey

Ender Dinçer,¹ Mehmet Özkan Timurkan,² Bekir Oğuz,³ İsmail Şahindokuyucu,⁴ Adem Şahan,⁵ Mustafa Ekinci,⁶ Ceylan Polat,⁷ and Koray Ergünay⁷

Ticks and Tick-borne Diseases 12 (2021) 101622

Contents lists available at ScienceDirect

Ticks and Tick-borne Diseases

TICKS and TICK-BORNE DISEASES

journal homepage: www.elsevier.com/locate/ttbdis

Original article

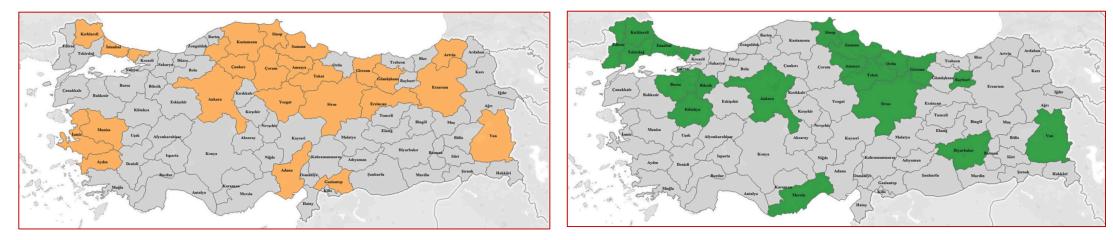
ELSEVIER

High prevalence and different genotypes of Crimean-Congo hemorrhagic fever virus genome in questing unfed adult *Hyalomma marginatum* in Thrace, Turkey

Gurkan Akyildiz^a, Dennis Bente^b, Aysen Gargili Keles^c, Zati Vatansever^d, Sirri Kar^{a,b,*}

➤ Thrace

- Hyalomma marginatum
- 9 villages 24 sites and 200 ticks were collected.
- 51% was CCHFV positive and belonged to Clade VI.



Viremia in Human and Infected Ticks

Virus detection in humans

Virus detection in ticks

- A CCHFV strain (AP92) was isolated from Rhipichepahlus bursa ticks collected from spats in Northern Greece, in 1975. Antibodies to CCHFV were found in 6.25% of residents where strain AP92 was isolated; however, positive cases did not have any symptoms of CCHF.
- According to a survey conducted in Greece between 1981 and 1988, the seroprevalence of CCHFV was 1% among the population surveyed, and approximately 3% were positive for CCHFV-reactive IgG in a 2008–2009 study.

Antoniadis, et al. 1990

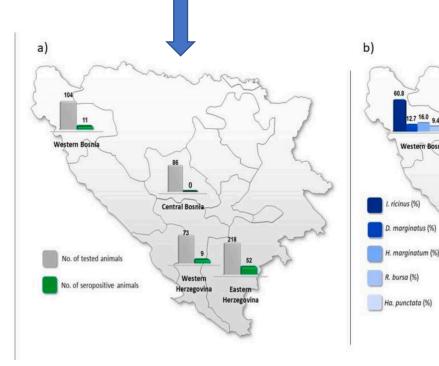
• The first serious case of CCHF in Greece was registered in 2008 when a woman died in Komotini, a town in northeastern Greece. Molecular analysis revealed that the causative strain (Rodopi) was genetically distinct from strain AP92.

Papa, et al. 2011

Greece - Seroprevalence

Author	Publication year	Study years	Country	Objective (related to CCHF seroprevalence in humans)	N	Risk factors	Seroprevalence of IgG: Value (%)
Antoniadis et al. [26]	1982	1980– 1981	Greece (rural area, Northern Greece)	To determine the prevalence of CCHFV antibodies in a rural population of Northern Greece	65	Farming Living in Northern Greece (CCHF isolated in this zone from Rhipicephalus bursa since 1978)	4 (6.2)
Filipe <i>et al.</i> [27]	1985	1980	Portugal	To establish the seroprevalence of CCHFV virus in Southern Portugal	190	Living in certain areas of 2 Southern Portugal (1.1)	
Palomar et al. [28]	2017	2010– 2014	Spain	To evaluate the presence of antibodies against the virus in individuals exposed to tick bites	228	No risk factors found	0 (0.0)
Papa <i>et al.</i> [29]	2014	2012	Greece	To make a small-scale serologic survey in humans and animals in the area where CCHFV-positive tick had been detected	100	Ageing	6 (6.0)
Papa <i>et al.</i> [<u>30]</u>	2013	2010- 2012	Greece (Western, border to Albania and Ionian Sea Coast)	To check in more detail the CCHFV situation in Thesprotia prefecture (western region, border with Albania) and find out any risk factors associated with seropositivity	166	56 Ruminants husbandry 24 Slaughtering (14.4) Ageing	
Papa <i>et al.</i> [31]	2011	2008– 2009	Greece (Eastern, border to Bulgaria)	To determine the prevalence of CCHFV antibodies in the human population of Northeastern Greece	1178	178 Female sex 37 Ageing (3.1) Ruminants husbandry Slaughtering Tick exposure	
Sargianou et al. [32]	2013	2012	Greece (Coast of the Gulf of Corinth)	To estimate the seroprevalence of CCHFV in humans in Achaia Prefecture, Greece, and to assess risk factors in seropositivity	207	Agropastoral occupation Ruminants (especially with sheep) Living at an altitude of ≥400m	7 (3.4)
Sidira <i>et al.</i> [<u>33</u>]	2013	2010– 2011	Greece (Northern coast of the Aegean Sea)	To estimate the CCHFV seroprevalence among humans residing in the prefecture of Imathia, and the neighbouring prefecture of Pella, and to investigate demographics and probable risk factors associated with the seropositivity	277	Tick exposure Residence in a hilly territory Ageing Agropastoral occupation	6 (2.2)
Sidira <i>et al.</i> [<u>6]</u>	2012	2009– 2010	Greece	To estimate endemic areas CCHF in Greece	1611	Slaughtering Agropastoral occupation Ruminants husbandry	68 (4.2)

Greece


- An outbreak of eight cases of CCHF occurred in Albania during the spring and summer of 2001, with the infection of seven cases confirmed by laboratory tests.
- A nosocomial infection was discovered, as well as a familial cluster of cases. Genetic analysis
 revealed that the causative virus clustered together with other European CCHFV cases

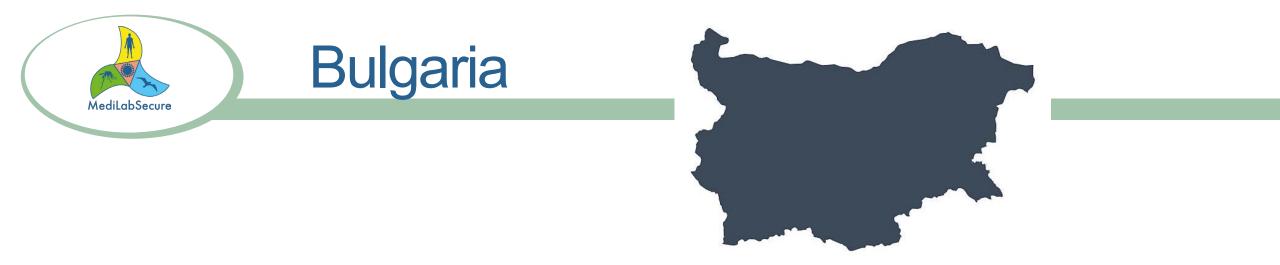
Papa, et al. 2002

BALKANS – Bosnia-Herzegovina

Approximately 1/10 of cattle in the region of western Bosnia, western and eastern Herzegovina showed CCHFV seroconversion.

Central Bosnia

Eastern Herzegovina


Contents lists available at ScienceDirect
Ticks and Tick-borne Diseases
journal homepage: www.elsevier.com/locate/ttbdis

Original article

Serologic and molecular evidence for circulation of Crimean-Congo hemorrhagic fever virus in ticks and cattle in Bosnia and Herzegovina

Teufik Goletic[®], Lejla Satrovic, Adis Softic, Jasmin Omeragic, Sejla Goletic, Darinka Klaric Soldo, Amira Koro Spahic, Almedina Zuko, Edin Satrovic, Amer Alic

> One pool of H. marginatum ticks collected from cattle in the region of eastern Herzegovina was positive for CCHFV gRNA (3/760 - 0.39%).

- Between 1953 and 1974, numerous CCHF cases were detected in Bulgaria, and the death ratio was around 17%. During this time, 20 nosocomial infections were reported.
- The first inactivated virus vaccine (mouse brain) was developed!
- Between 1975 and 1996, the number of reported CCHF cases decreased, with a death ratio also decreasing to 11.4%. The CCHFV strains from Bulgaria were found to cluster with other Balkan strains from Kosovo and Albania (Papa et al, 2002).

- The first cases of CCHF were reported in 1989. In 1995, 2001, and 2004, there were three major outbreaks with a total of 186 serologically confirmed cases.
- The central and southwestern parts of Kosovo are hyper-endemic for CCHF.

Humolli et al, 2010

• A phylogenetic study suggested that CCHFV was recently introduced to Kosovo (within the last 50 years), sharing a common ancestor with strains from Turkey.

Emmerich et al, 2018

Contents lists available at ScienceDirect

Ticks and Tick-borne Diseases

Check for updates

journal homepage: www.elsevier.com/locate/ttbdis

New geographical area on the map of Crimean-Congo hemorrhagic fever virus: First serological evidence in the Hungarian population

Nóra Magyar^{a, c}, Zoltán Kis^{a, c}, Éva Barabás^b, Anna Nagy^a, Judit Henczkó^{a, c}, Ivelina Damjanova^a, Mária Takács^{a, c}, Bernadett Pályi^{a, *}

- A total of 2700 serum samples obtained from healthy volunteer blood donors were screened using an in-house immunofluorescence assay and a commercially available ELISA kit.
- They found ten (0.37 %) seropositive donors.

Pan-Europe Seroprevalance

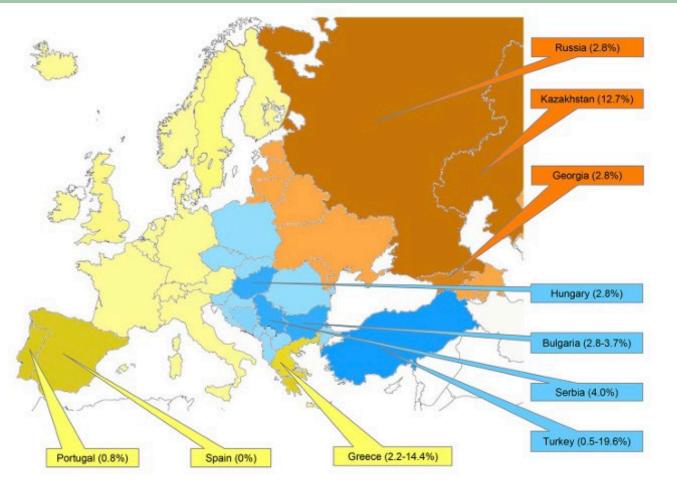


Fig 2. Seroprevalence of CCHFV in Western Europe (yellow), Center Europe (blue) and Eastern Europe (orange).

https://doi.org/10.1371/journal.pntd.0008094.g002

TICKS & The Virus

Family	Genus	Species	Geographical Distribution
		Hy. marginatum	Middle East, Northern Africa, Southern Europe
		Hy. dromedarii	Middle East, Northern Africa
		Hy. rufipes	Middle East, Africa
		Hy. turanicum	Asia, Africa
		Hy. nitidum	Central Africa
		Hy. anatolicum	Asia
		Hy. asiaticum	Asia
	Hyalomma	Hy. detritum	Middle East, Africa
		Hy. excavatum	Africa, Middle East
		Hy. truncatum	Africa
		Hy. schulzei	Arabia peninsula
		Hy. impeltatum	Northern Africa, Arabian Peninsula
		Hy. lusitanicum	Africa, Spain
		Hy. isaaci	Africa
		Hy. impressum	Africa, Pakistan
		Rh. sanguineus	Asia
		Rh. bursa	Southeastern Europe, Middle East
Ixodidae		Rh. annulatus	Middle East, Central parts of Africa
		Rh. turanicus	Southern Europe, Asia
	Rhipicephalus	Rh. rossicus	Caucasia, southern Russia
	Tempteephanas	Rh. evertsi	Sub-Saharan Africa
		Rh. decoloratus	Uganda
		Rh. appendiculatus	Iran
		Rh. microplus	Africa, Pakistan
		Rh. guilhoni	Senegal
		Ha. punctata	Some parts of Asia, South-East of Europe
		Ha. inermis	Iran
	Haemaphysalis	Ha. concinna	Turkey
		Ha. sulcata	Iran
		Ha. parva	Turkey, North Caucasus
	Demos	De. marginatus	Southern Europe, Middle East, Mediterranean
	Dermacentor	De. niveus	Tajikistan
	Ixodes	Ix. ricinus	Europe, Mediterranean, Northern Africa
	Amblyomma	Am. variegatum	Sub-Saharan Africa
	-	-	

What do we need? Obstacles!

• One Health Approach (Gilbride et al. 2021)

Control measure strategy	Current status			
Immunisation of humans	 Limited licensure of one inactivated vaccine in Eastern Europe Multiple vaccine candidates show promise in pre-clinical studies No published assessment of candidates in human trials 			
Immunisation of animals	 Multiple vaccine candidates show promise in pre-clinical studies Lack of disease burden means a lack of economic incentive to vaccinate 			
Tick control	 Acaricidal agents known to be effective at reducing vector-borne disease rates Environmental implications and logistical issues of widespread usage 			
Diagnostic, education, and surveillance	 PCR available but often limited in capacity or inaccessible Sero-surveillance rates increasing (44) 			

TABLE 3 | The different control measures that may facilitate a CCHF One Health approach and the current status or challenges for their implementation.

- > Lack of systematic epidemiological data from all endemic countries.
- Difficult to calculate attack rates in most of the endemic countries.
- ➢ NO knowledge about the Re-infection.
- Is the tick control effective? Is it enough?
- Risky tick viruses (for possible recombinations), such as Jingmen tick virus, Tacheng tick virus

Thank you

Contact: ozkul@ankara.edu.tr

Balkan & Black Sea Regional Meeting